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Figure 1. BEDLAM is a large-scale synthetic video dataset designed to train and test algorithms on the task of 3D human pose and shape
estimation (HPS). BEDLAM contains diverse body shapes, skin tones, and motions. Beyond previous datasets, BEDLAM has SMPL-X
bodies with hair and realistic clothing animated using physics simulation. With BEDLAM’s realism and scale, we find that synthetic data
is sufficient to train regressors to achieve state-of-the-art HPS accuracy on real-image datasets without using any real training images.

Abstract

We show, for the first time, that neural networks trained
only on synthetic data achieve state-of-the-art accuracy on
the problem of 3D human pose and shape (HPS) estima-
tion from real images. Previous synthetic datasets have
been small, unrealistic, or lacked realistic clothing. Achiev-
ing sufficient realism is non-trivial and we show how to
do this for full bodies in motion. Specifically, our BED-
LAM dataset contains monocular RGB videos with ground-
truth 3D bodies in SMPL-X format. It includes a diver-
sity of body shapes, motions, skin tones, hair, and cloth-
ing. The clothing is realistically simulated on the moving
bodies using commercial clothing physics simulation. We
render varying numbers of people in realistic scenes with
varied lighting and camera motions. We then train vari-
ous HPS regressors using BEDLAM and achieve state-of-
the-art accuracy on real-image benchmarks despite train-
ing with synthetic data. We use BEDLAM to gain insights
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into what model design choices are important for accu-
racy. With good synthetic training data, we find that a
basic method like HMR approaches the accuracy of the
current SOTA method (CLIFF). BEDLAM is useful for a
variety of tasks and all images, ground truth bodies, 3D
clothing, support code, and more are available for research
purposes. Additionally, we provide detailed information
about our synthetic data generation pipeline, enabling oth-
ers to generate their own datasets. See the project page:
https://bedlam.is.tue.mpg.de/.

1. Introduction

The estimation of 3D human pose and shape (HPS)
from images has progressed rapidly since the introduc-
tion of HMR [32], which uses a neural network to regress
SMPL [45] pose and shape parameters from an image. A
steady stream of new methods have improved the accuracy
of the estimated 3D bodies [21, 33, 35, 38, 41, 73, 93]. The
progress, however, entangles two things: improvements to
the architecture and improvements to the training data. This
makes it difficult to know which matters most. To answer
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this, we need a dataset with real ground truth 3D bodies
and not simply 2D joint locations or pseudo ground truth.
To that end, we introduce a new, realistic, synthetic dataset
called BEDLAM (Bodies Exhibiting Detailed Lifelike An-
imated Motion) and use it to analyze the current state of the
art (SOTA). Fig. 1 shows example images from BEDLAM
along with the ground-truth SMPL-X [57] bodies.

Theoretically, synthetic data has many benefits. The
ground truth is “perfect” by construction, compared with
existing image datasets. We can ensure diversity of the
training data across skin tones, body shapes, ages, etc., so
that HPS methods are inclusive. The data can also be easily
repurposed to new cameras, scenes, and sensors. Conse-
quently, there have been many attempts to create synthetic
datasets to train HPS methods. While prior work has shown
synthetic data is useful, it has not been sufficient so far. This
is likely due to the lack of realism and diversity in existing
synthetic datasets.

In contrast, BEDLAM provides the realism necessary to
test whether “synthetic data is all you need”. Using BED-
LAM, we evaluate different network architectures, back-
bones, and training data and find that training only using
synthetic data produces methods that generalize to real im-
age benchmarks, obtaining SOTA accuracy on both 3D hu-
man pose and 3D body shape estimation. Surprisingly, we
find that even basic methods like HMR [32] achieve SOTA
performance on real images when trained on BEDLAM.

Dataset. BEDLAM contains monocular RGB videos to-
gether with ground truth 3D bodies in SMPL-X format. To
create diverse data, we use 271 body shapes (109 men and
162 women), with 100 skin textures from Meshcapade [3]
covering a wide range of skin tones. In contrast to previous
work, we add 27 different types of hair (Reallusion [1]) to
the head of SMPL-X. To dress the body, we hired a pro-
fessional 3D clothing designer to make 111 outfits, which
we drape and simulate on the body using CLO3D [2]. We
also texture the clothing using 1691 artist-designed textures.
The bodies are animated using 2311 motions sampled from
AMASS [47]. Because AMASS does not include hand mo-
tions, we replace the static hands with hand motions sam-
pled from the GRAB dataset [74]. We render single people
as well as groups of people (varying from 3-10) moving in a
variety of 3D scenes (8) and HDRI panoramas (95). We use
a simple method to place multiple people in the scenes so
that they do not collide and use simulated camera motions
with various focal lengths. The synthetic image sequences
are rendered using Unreal Engine 5 [5] at 30 fps with mo-
tion blur. In total, BEDLAM contains around 380K unique
image frames with 1-10 people per image, for a total of 1M
unique bounding boxes with people.

We divide BEDLAM into training, validation, and test
sets with 75%, 20% and 5% of the total bounding boxes
respectively. While we make all the image data available,

we withhold the SMPL-X ground truth from the test set and
provide an automated evaluation server. For the training and
validation sets, we provide all the SMPL-X animations, the
3D clothing, skin textures, and all freely available assets.
Where we have used commercial assets, we provide infor-
mation about how to obtain the data and replicate our re-
sults. We also provide the details necessary for researchers
to create their own data.

Evaluation. With sufficient high-quality training data,
fairly simple neural-network architectures often produce
SOTA results on many vision tasks. Is this true for HPS
regression? To tackle this question, we train two different
baseline methods (HMR [32] and CLIFF [38]) on varying
amounts of data and with different backbones; HMR repre-
sents the most basic method and CLIFF the recent SOTA.
Since BEDLAM provides paired images with SMPL-X pa-
rameters, we train methods to directly regress these parame-
ters; this simplifies the training compared with methods that
use 2D training data. We evaluate on natural-image datasets
including 3DPW [79] and RICH [26], a laboratory dataset
(Human3.6M [27]), as well as two datasets that evaluate
body shape accuracy (SSP-3D [66] and HBW [16]).

Surprisingly, despite its age, we find that training HMR
on synthetic data produces results on 3DPW that are bet-
ter than many recently published results and are close to
CLIFF. We find that the backbone has a large impact on
accuracy, and pre-training on COCO is significantly better
than pre-training on ImageNet or from scratch. We perform
a large number of experiments in which we train with just
synthetic data, just real data, or synthetic data followed by
fine tuning on real data. We find that there is a significant
benefit to training on synthetic data over real data and that
fine tuning with real data offers only a small benefit.

A key property of BEDLAM is that it contains realisti-
cally dressed people with ground truth body shape. Con-
sequently, we compare the performance of methods trained
on BEDLAM with two SOTA methods for body shape re-
gression: SHAPY [16] and Sengupta et al. [67] using both
the HBW and SSP-3D datasets. CLIFF trained with BED-
LAM does well on both datasets, achieving the best overall
of all methods tested. This illustrates how methods trained
on BEDLAM generalize across tasks and datasets.

Summary. We propose a large synthetic dataset of re-
alistic moving 3D humans. We show that training on syn-
thetic dataset alone, even with a basic network architecture,
produces accurate 3D human pose and shape estimates on
real data. BEDLAM enables us to perform an extensive
meta-ablation study that illuminates which design decisions
are most important. While we focus on HPS, the dataset has
many other uses in learning 3D clothing models and action
recognition. BEDLAM is available for research purposes
together with an evaluation server and the assets needed to
generate new datasets.



2. Related work
There are four main types of data used to train HPS re-

gressors: (1) Real images from constrained scenarios with
high-quality ground truth (lab environments with motion
capture). (2) Real images in-the-wild with 2D ground truth
(2D keypoints, silhouettes, etc.). (3) Real images in-the-
wild with 3D pseudo ground truth (estimated from 2D or
using additional sensors). (4) Synthetic images with perfect
ground truth. Each of these has played an important role in
advancing the field to its current state. The ideal training
data would have perfect ground truth 3D human shape and
pose information together with fully realistic and highly di-
verse imagery. None of the above fully satisfy this goal. We
briefly review 1-3 while focusing our analysis on 4.

Real Images. Real images are diverse, complex, and
plentiful. Most methods that use them for training rely
on 2D keypoints, which are easy to manually label at
scale [7, 28, 42, 48]. Such data relies on human annota-
tors who may not be consistent, and only provides 2D con-
straints on human pose with no information about 3D body
shape. In controlled environments, multiple cameras and
motion capture equipment provide accurate ground truth
[10,13,14,24,26,27,31,37,53,69,77,79,88,94]. In general,
the cost and complexity of such captures limits the number
of subjects, the variety of clothing, the types of motion, and
the number of scenes.

Several methods fit 3D body models to images to get
pseudo ground truth SMPL parameters [30, 35, 51]. Net-
works trained on such data inherit any biases of the meth-
ods used to compute the ground truth; e.g. a tendency to es-
timate bent knees, resulting from a biased pose prior. Syn-
thetic data does not suffer such biases.

Most image datasets are designed for 3D pose estimation
and only a few have addressed body shape. SSP-3D [66]
contains 311 in-the-wild images of 62 people wearing tight
sports clothing with pseudo ground truth body shape. Hu-
man Bodies in the Wild (HBW) [16] uses 3D body scans
of 35 subjects who are also photographed in the wild with
varied clothing. HBW includes 2543 photos with “perfect”
ground truth shape. Neither dataset is sufficiently large to
train a general body shape regressor.

In summary, real data for training HPS involves a fun-
damental trade off. One can either have diverse and natural
images with low-quality ground truth or limited variability
with high-quality ground truth.

Synthetic. Synthetic data promises to address the limita-
tions of real imagery and there have been many previous
attempts. While prior work has shown synthetic data to be
useful (e.g. for pre-training), no prior work has shown it to
be sufficient without additional real training data. We hy-
pothesize that this is due to the fact that prior datasets have
either been too small or not sufficiently realistic. To date, no

state-of-the-art method is trained from synthetic data alone.
Recently, Microsoft has shown that a synthetic dataset of

faces is sufficiently accurate to train high-quality 2D feature
detection [81]. While promising, human bodies are more
complex. AGORA [56] provides realistic images of clothed
bodies from static commercial scans with SMPL-X ground
truth. SPEC [34] extends AGORA to more varied camera
views. These datasets have limited avatar variation (e.g. few
obese bodies) and lack motion.

Synthetic from real. Since creating realistic people us-
ing graphics is challenging, several methods capture real
people and then render them synthetically in new scenes
[22,49,50]. For example, MPI-INF-3DHP [49] captures 3D
people, augments their body shape, and swaps out clothing
before compositing the people on images. Like real data,
these capture approaches are limited in size and variety. An-
other direction takes real images of people plus information
about body pose and, using machine learning methods, syn-
thesizes new images that look natural [63, 90]. This is a
promising direction but, to date, no work has shown that
this is sufficient train HPS regressors.

Synthetic data without clothing. Synthesizing images
of 3D humans on image backgrounds has a long history
[70]. We focus on more recent datasets for training HPS re-
gressors for parametric 3D human body models like SCAPE
[8] (e.g. Deep3DPose [15]) and SMPL [45] (e.g. SUR-
REAL [78]). Both apply crude textures to the naked body
and then render the bodies against random image back-
grounds. In [15, 25], the authors use domain adaptation
methods to reduce the domain gap between synthetic and
real images. In [78] the authors use synthetic data largely
for pre-training, requiring fine tuning on real images.

Since realistic clothes and textures are hard to gener-
ate, several methods render SMPL silhouettes or part seg-
ments and then learn to regress HPS from these [58,64,85].
While one can generate an infinite amount of such data,
these methods rely on a separate process to compute sil-
houettes from images, which can be error prone. For exam-
ple, STRAPS [66] uses synthetic data to regress body shape
from silhouettes.

Synthetic data with rigged clothing. Another approach
renders commercial, rigged, body models for which the
clothing deformations are not realistic. For example PSP-
HDRI+ [19], 3DPeople [59], and JTA [20] use rigged char-
acters but provide only 3D skeletons so they cannot be used
for body shape estimation. The Human3.6M dataset [27]
includes mixed-reality data with rigged characters inserted
into real videos. There are only 5 sequences, 7.5K frames,
and a limited number of rigged models, making it too small
for training. Multi-Garment Net (MGN) [12] constructs a
wardrobe from rigged 3D scans but renders them on im-
ages with no background. Synthetic data has also been
used to estimate ego-motion from head-mounted cameras



Figure 2. Dataset construction. Illustration of each step in the process, shown for a single character. Left to right: (a) sampled body
shape. (b) skin texture. (c) clothing simulation. (d) cloth texture. (e) hair. (f) pose. (g) scene and illumination. (h) motion blur.

Figure 3. Skin tone diversity. Example body textures from 50 male
and 50 female textures, covering a wide range of skin tones.

[6, 76, 84]. HSPACE [9] uses 100 rigged people with 100
motions and 100 3D scenes. To get more variety, they fit
GHUM [83] to the scans and reshape them. They train an
HPS method [91] on the data and note that “models trained
on synthetic data alone do not perform the best, not even
when tested on synthetic data.” This statement is consistent
with the findings of other methods and points to the need
for increased diversity to achieve generalization.

Simulated clothing with images. Physics-based cloth
simulation provides greater realism than rigged clothing and
allows us to dress a wide range of bodies in varied clothing
with full control. The problem, however, is that physics
simulation is challenging and this limits the size and com-
plexity of previous datasets. Liang and Lin [39] and Liu
et al. [44] simulate 3D clothing draped on SMPL bodies.
They render the people on image backgrounds with limited
visual realism. BCNet [29] uses both physics simulation
and rigged avatars but the dataset is aimed at 3D clothing
modeling more than HPS regression. Other methods use a
very limited number of garments or body shapes [17, 80].

Simulated clothing without images. Several methods
drape clothing on the 3D body to create datasets for learning
3D clothing deformations [11,23,55,65,75]. These datasets
are limited in size and do not contain rendered images.

Summary. The prior work is limited in one or more
of these properties: body shapes, textures, poses, motions,
backgrounds, clothing types, physical realism, cameras, etc.
As a result, these datasets are not sufficient for training HPS
methods that work on real images.

3. Dataset

Each step in the process of creating BEDLAM is ex-
plained below and illustrated in Fig. 2. Rendering is per-
formed using Unreal Engine 5 (UE5) [5]. Additionally, the
Sup. Mat. provides details about the process and all the 3D
assets. The Supplemental Video shows example sequences.

Figure 4. Diversity of clothing and texture. Top: samples from
BEDLAM’s 111 outfits with real-world complexity. Bottom: each
outfit has several clothing textures. Total: 1691.

3.1. Dataset Creation

Body shapes. We want a diversity of body shapes, from
slim to obese. We get 111 adult bodies in SMPL-X format
from AGORA dataset. These bodies mostly correspond to
models with low BMI. To increase diversity, we sample an
additional 80 male and 80 female bodies with BMI > 30
from the CAESAR dataset [62]. Thus we sample body
shapes from a diverse pool of 271 body shapes in total.
The ground truth body shapes are represented with 11 shape
components in the SMPL-X gender-neutral shape space.
See Sup. Mat. for more details about the body shapes.

Skin tone diversity. HPS estimation will be used in a wide
range of applications, thus it is important that HPS solutions
be inclusive. Existing HPS datasets have not been designed
to ensure diversity and this is a key advantage of synthetic
data. Specifically, we use 50 female and 50 male commer-
cial skin albedo textures from Meshcapade [3] with mini-
mal clothing and a resolution of 4096x4096. These artist-
created textures represent a total of seven ethnic groups
(African, Asian, Hispanic, Indian, Mideast, South East
Asian and White) with multiple variations within each. A
few examples are shown in Fig. 3.

3D Clothing and textures. A key limitation of previous
synthetic datasets is the lack of diverse and complex 3D
clothing with realistic physics simulation of the clothing in
motion. To address this, we hired a 3D clothing designer
to create 111 unique real-world outfits, including but not



Figure 5. Clothing as texture maps for high-BMI bodies. Left:
example simulated clothing. Right: clothing texture mapped on
bodies with BMIs of 30, 40, and 50.

Figure 6. 10 examples of BEDLAM’s 27 hairstyles.

limited to T-shirts, shirts, jeans, tank tops, sweaters, coats,
duvet jackets, suits, gowns, bathrobes, vests, shorts, pants,
and skirts. Unlike existing synthetic clothing datasets, our
clothing designs have complex and realistic structure and
details such as pleats, pockets, and buttons. Example out-
fits are shown in Fig. 4. We use commercial simulation
software from CLO3D [2] to obtain realistic clothing defor-
mations with various body motions for the bodies from the
AGORA dataset (see Supplemental Video). This 3D dataset
is a unique resource that we will make available to support
a wide range of research on learning models of 3D clothing.

Diversity of clothing appearance is also important. For
each outfit we design 5 to 27 clothing textures with different
colors and patterns. In total we have 1691 unique clothing
textures. Examples are shown in Fig. 4.

For high-BMI bodies, physics simulation of clothing
fails frequently due to the difficulty of garment auto-
resizing and interpenetration between body parts. For such
situations, we use clothing texture maps that look like cloth-
ing “painted” on the body. Specifically, we auto-transfer the
textures of 1738 simulated garments onto the body UV-map
using Blender. We then render high-BMI body shapes using
these textures (see Fig. 5).

Hair. We use the Character Creator (CC) software from
Reallusion [1] and purchased hairstyles to generate 27
hairstyles (Fig. 6). We auto-align our SMPL-X female and
male template mesh to the CC template mesh and then
transfer the SMPL-X deformations to it. We then apply the
hairstyles in the CC software to match our custom head-
shapes. We export the data to Blender to automatically pro-
cess the hair mesh vertices so that their world vertex po-
sitions are relative to the head node positioned at the ori-
gin. Note that vendor-provided plugins take care of the ex-
tensive shader setup needed for proper rendering of these
hair-card-based meshes. Finally the “virtual toupees” are

imported into Unreal Engine where they are attached to the
head nodes of the target SMPL-X animation sequences. The
world-pose of each toupee is then automatically driven by
the Unreal Engine animation system.

Human motions. We sample human motions from the
AMASS dataset [47]. Due to the long-tail distribution of
motions in the dataset, a naive random sampling leads to a
strong bias towards a small number of frequent motions, re-
sulting in low motion diversity. To avoid this, we make use
of the motion labels provided by BABEL [60]. Specifically,
we sample different numbers of motion sequences for each
motion category according to their motion diversity (see
Sup. Mat. for details). This leads to 2311 unique motions.
Each motion sequence lasts from 4 to 8 seconds. Naively
transferring these motions to new body shapes in the format
of joint angle sequences may lead to self-interpenetration,
especially for high-BMI bodies. To avoid this, we follow
the approach in TUCH [52] to resolve collisions among
body parts for all the high-BMI bodies. While the released
dataset is rendered at 30fps, we only use every 5th frame for
training and evaluation to reduce pose redundancy. The full
sequences will be useful for research on 3D human track-
ing, e.g. [61, 72, 86, 89].

Unfortunately, most motion sequences in AMASS con-
tain no hand motion. To increase realism, diversity, and
enable research on hand pose estimation, we add hand mo-
tions sampled from the GRAB [74] dataset. While these
hand motions do not semantically “match” the body motion,
the rendered sequences still look realistic, and are sufficient
for training full-body and hand regressors.

Scenes and lighting. We represent the environment either
through 95 panoramic HDRI images [4] or through 8 3D
scenes. We manually select HDRI panoramas that enable
the plausible placement of animated bodies on a flat ground
plane up to a distance of 10m. We randomize the viewpoint
into the scenes and use the HDRI images for image-based
lighting. For the 3D scenes we focus on indoor environ-
ments since the HDRI images already cover outdoor envi-
ronments well. To light the 3D scenes, we either use Light-
mass precalculated global illumination or the new Lumen
real-time global illumination system introduced in UE5 [5].

Multiple people in the scene. For each sequence we ran-
domly select between 1 and 10 subjects. For each subject
a random animation sequence is selected. We leverage bi-
nary ground occupancy maps and randomly place the mov-
ing people into the scene such that they do not collide with
each other or scene objects. See Sup. Mat. for details.

Cameras. For BEDLAM, we focus on cameras that one
naturally encounters in common computer vision datasets.
For most sequences we use a static camera with random-
ized camera extrinsics. The extrinsics correspond to typical
ground-level hand-held cameras in portrait and landscape



mode. Some sequences use additional extrinsics augmenta-
tion by simulating a cinematic orbit camera shot. Camera
intrinsics are either fixed at HFOV of 52 and 65 or zoom in
from 65 to 25 HFOV.

Rendering. We render the image sequences using the UE5
game engine rasterizer with the cinematic camera model
simulating a 16:9 DSLR camera with a 36x20.25mm sensor
size. The built-in movie render subsystem (Movie Render
Queue) is used for deterministic and high-quality image se-
quence generation. We simulate motion blur caused by the
default camera shutter speed by generating 7 temporal im-
age samples for each final output image. A single Windows
11 PC using one NVIDIA RTX3090 GPU was used to ren-
der all color images and store them as 1280x720 lossless
compressed PNG files with motion blur at an average rate
of more than 5 images/s.

Depth maps and segmentation. While our focus is on HPS
regression, BEDLAM can support other uses. Since the
data is synthetic, we also render out depth maps and seg-
mentation masks with semantic labels (hair, clothing, skin).
These are all available as part of the dataset release. See
Sup. Mat. for details.

3.2. Dataset Statistics

In summary, BEDLAM is generated from a combination
of 271 bodies, 27 hairstyles, 111 types of clothing, with
1691 clothing textures, 2311 human motions, in 95 HDRI
scenes and 8 3D scenes, with on average 1-10 person per
scene, and a variety of camera poses. See Sup. Mat. for
detailed statistics. This results in 10K motion clips, from
which we use 380K RGB frames in total. We compute the
size of the dataset in terms of the number of unique bound-
ing boxes containing individual people. BEDLAM contains
1M such bounding boxes, which we divide into sets of about
750K, 200K, and 50K examples for training, validation, and
test, respectively. See Sup. Mat. for a detailed comparison
of BEDLAM’s size and diversity relative to existing real
and synthetic datasets.

4. Experiments
4.1. Implementation Details

We train both HMR and CLIFF on the synthetic data
(BEDLAM+AGORA) using an HRNet-W48 [71] back-
bone and refer to these as BEDLAM-HMR and BEDLAM-
CLIFF respectively. We conduct different experiments with
the weights of the backbone initialized from scratch, using
ImageNet [18], or using a pose estimation network trained
on COCO [82]. We represent all ground truth bodies in a
gender neutral shape space to supervise training; we do not
use gender labels. We remove the adversary from HMR
and set the ground truth hand poses to neutral when training
BEDLAM-HMR and BEDLAM-CLIFF. We apply a variety

of data augmentations during training. We experiment with
a variety of losses; the final loss is a combination of MSE
loss on model parameters, projected keypoints, 3D joints,
and an L1 loss on 3D vertices.

We re-implement CLIFF (called CLIFF†) and train it on
only real image data using the same settings as BEDLAM-
CLIFF. Following [38], we train CLIFF† using Human3.6M
[27], MPI-INF-3DHP [49], and 2D datasets COCO [43] and
MPII [7] with pseudo-GT provided by the CLIFF annotator.
Table 1 shows that, when trained on real images, and fine-
tuned on 3DPW training data, CLIFF† matches the accuracy
reported in [38] on 3DPW and is even more accurate on
RICH. Thus our implementation can be used as a reference.

We also train a full body network, BEDLAM-CLIFF-X,
to regress body and hand poses. To train the hand network,
we create a dataset of hand crops from BEDLAM training
images using the ground truth hand keypoints. Since hands
are occluded by the body in many images, MediaPipe [46]
is used to detect the hand in the crop. Only the crops where
the hand is detected with a confidence greater than 0.8 are
used in the training. For details see Sup. Mat.

4.2. Datasets and Evaluation Metrics

Datasets. For training we use around 750K crops
from BEDLAM and 85K crops from AGORA [56]. We
also finetune BEDLAM-CLIFF and BEDLAM-HMR on
3DPW training data; these are called BEDLAM-CLIFF*
and BEDLAM-HMR*. To do so, we convert the 3DPW
[79] GT labels in SMPL-X format. We use 3DPW for eval-
uation but, since it has limited camera variation, we also
use RICH [26] which has more varied camera angles. Both
3DPW and RICH have limited body shape variation, hence
to evaluate body shape we use SSP-3D [66] and HBW [16].
In Sup. Mat. we also evaluate on Human3.6M [27] and ob-
serve that, without fine-tuning on the dataset, training on
BEDLAM produces more accurate results than training us-
ing real images; that is, BEDLAM generalizes better to the
lab data. To evaluate the output from BEDLAM-CLIFF-X,
we use the AGORA and BEDLAM test sets.

Evaluation metrics. We use standard metrics to evalu-
ate body pose and shape accuracy. PVE and MPJPE rep-
resent the average error in vertices and joints positions,
respectively, after aligning the pelvis. PA-MPJPE further
aligns the rotation and scale before computing distance.
PVE-T-SC is per-vertex error in a neutral pose (T-pose) after
scale-correction [66]. P2P20k is per-vertex error in a neutral
pose, computed by evenly sampling 20K points on SMPL-
X’s surface [16]. All errors are in mm.

For evaluation on 3DPW and SSP-3D, we convert our
predicted SMPL-X meshes to SMPL format by using a ver-
tex mapping D ∈ R10475×6890 [57]. The RICH dataset
has ground truth in SMPL-X format but hand poses are less
reliable than body pose due to noise in multi-view fitting.



Figure 7. Example BEDLAM-CLIFF results from all test datasets. Left to right: SSP-3D × 2, HBW × 3, RICH, 3DPW.

Method 3DPW (14) RICH (24)

PA-MPJPE MPJPE PVE PA-MPJPE MPJPE PVE

PARE* [33] 46.5 74.5 88.6 60.7 109.2 123.5
METRO* [40] 47.9 77.1 88.2 64.8 114.3 128.9
CLIFF* [38] 43.0 69.0 81.2 56.6 102.6 115.0
CLIFF†* 43.6 68.8 82.1 55.7 91.6 104.4
BEDLAM-HMR* 43.3 71.8 83.6 50.9 88.2 101.8
BEDLAM-CLIFF* 43.0 66.9 78.5 50.2 84.4 95.6

HMR [32] 76.7 130 N/A 90.0 158.3 186.0
SPIN [35] 59.2 96.9 116.4 69.7 122.9 144.2
SPEC [34] 53.2 96.5 118.5 72.5 127.5 146.5
PARE [33] 50.9 82.0 97.9 64.9 104.0 119.7
HybrIK [36] 48.8 80 94.5 56.4 96.8 110.4
Pang et. al. [54] 47.3 81.9 96.5 63.7 117.6 136.5
CLIFF† 46.4 73.9 87.6 55.7 90.0 102.0
BEDLAM-HMR 47.6 79.0 93.1 53.2 91.4 106.0
BEDLAM-CLIFF 46.6 72.0 85.0 51.2 84.5 96.6

Table 1. Reconstruction error on 3DPW and RICH. *Trained with
3DPW training set. †Trained on real images with same setting as
BEDLAM-CLIFF. Parenthesis: (#joints).

Hence, we use it only for evaluating body pose and shape.
We convert the ground truth SMPL-X vertices to SMPL for-
mat using D after setting the hand and face pose to neutral.
To compute joint errors, we use 24 joints computed from
these vertices using the SMPL joint regressor. For evalua-
tion on AGORA-test and BEDLAM-test, we use a similar
evaluation protocol as described in [56].

4.3. Comparison with the State-of-the-Art

Table 1 summarizes the key results. (1) Pre-training on
BEDLAM and fine-tuning with a mix of 3DPW and BED-
LAM training data gives the most accurate results on 3DPW
and RICH (i.e. BEDLAM-CLIFF* is more accurate than
CLIFF†* or [38]). (2) Using the same training, makes HMR
(i.e. BEDLAM-HMR*) nearly as accurate on 3DPW and
more accurate than CLIFF†* on RICH. This suggests that
even simple methods can do well if trained on good data. (3)
BEDLAM-CLIFF, with no 3DPW fine-tuning, does nearly
as well as the fine-tuned version and generalizes better to
RICH than CLIFF with, or without, 3DPW fine-tuning. (4)
Both CLIFF and HMR trained only on synthetic data out-
perform the recent methods in the field. This suggests that
more effort should be put into obtaining high-quality data.

See Sup. Mat. for SMPL-X results.
Table 2 shows that BEDLAM-CLIFF has learned to es-

timate body body shape under clothing. While SHAPY
[92] performs best on HBW and Sengputa et al. [67] per-
forms best on SSP-3D, both of them perform poorly on
the other dataset. Despite not seeing either of the train-
ing datasets, BEDLAM-CLIFF ranks 2nd on SSP-3D and
HBW. BEDLAM-CLIFF has the best rank averaged across
the datasets, showing its generalization ability.

Qualitative results on all these benchmarks are shown in
Fig. 7. Note that, although we do not assign gender labels to
any of the training data, we find that, on test data, methods
trained on BEDLAM predict appropriately gendered body
shapes. That is, they have automatically learned the associ-
ation between image features and gendered body shape.

4.4. Ablation Studies

Table 3 shows the effect of varying datasets, backbone
weights and percentage of data; see Sup. Mat. for the full
table with results for HMR. We train with synthetic data
only and measure the performance on 3DPW. Note that the
backbones are pre-trained on image data, which is standard
practice. Training them from scratch on BEDLAM gives
worse results. It is sufficient to train using simple 2D task
for which there is plentiful data. Similar to [54], we find that
training the backbone on a 2D pose estimation task (COCO)
is important. We also vary the percentage of BEDLAM
crops used in training. Interestingly, we find that uniformly
sampling just 5% of the crops from BEDLAM produces
reasonable performance on 3DPW. Performance monoton-
ically improves as we add more training data. Note that
5% of BEDLAM, i.e. 38K crops, produces better results
than 85K crops from AGORA, suggesting that BEDLAM
is more diverse. Still, these synthetic datasets are comple-
mentary, with our best results coming from a combination
of the two. We also found that realistic clothing simulation
leads to significantly better results than training with tex-
tured bodies. This effect is more pronounced when using a
backbone pre-trained on ImageNet rather than COCO. See
Sup. Mat. for details.



Method Model SSP-3D HBW Average
PVE-T-SC Rank P2P20k Rank Rank

HMR [32] SMPL 22.9 8 - - -
SPIN [35] SMPL 22.2 7 29 4 5.5
SHAPY [16] SMPL-X 19.2 6 21 1 3.5
STRAPS [66] SMPL 15.9 4 47 6 5
Sengupta et al. [68] SMPL 15.2 3 - - -
Sengupta et al. [67] SMPL 13.6 1 32 5 3
CLIFF† SMPL 18.4 5 27 3 4
BEDLAM-CLIFF SMPL-X 14.2 2 22 2 2

Table 2. Per-vertex 3D body shape error on the SSP-3D and HBW
test set in T-pose (T). SC refers to scale correction.

Method Dataset Backbone Crops % PA-MPJPE MPJPE PVE

CLIFF B+A scratch 100 61.8 97.8 115.9
CLIFF B+A ImageNet 100 51.8 82.1 96.9
CLIFF B+A COCO 100 47.4 73.0 86.6

CLIFF B COCO 5 54.0 80.8 96.8
CLIFF B COCO 10 53.8 79.9 95.7
CLIFF B COCO 25 52.2 77.7 93.6
CLIFF B COCO 50 51.0 76.3 91.1

CLIFF A COCO 100 54.0 88.0 101.8
CLIFF B COCO 100 50.5 76.1 90.6

Table 3. Ablation experiments on 3DPW. B denotes BEDLAM
and A denotes AGORA. Crop %’s only apply to BEDLAM.

5. Limitations and Future Work

Our work demonstrates that synthetic human data can
stand in for real image data. By providing tools to enable re-
searchers to create their own data, we hope the community
will create new and better synthetic datasets. To support
that effort, below we provide a rather lengthy discussion of
limitations and steps for improvement; more in Sup. Mat.

Open source assets. There are many high-quality com-
mercial assets that we did not use in this project because
their licences restrict their use in neural network training.
This is a significant impediment to research progress. More
open-source assets are needed.

Motion and scenes. The human motions we use are
randomly sampled from AMASS. In real life, clothing and
motions are correlated, as are scenes and motions. Addi-
tionally, people interact with each other and with objects in
the world. Methods are needed to automatically synthesize
such interactions realistically [87]. Also, the current dataset
has relatively few sitting, lying, and complex sports poses,
which are problematic for cloth simulation.

Hair. BEDLAM lacks hair physics, long hairstyles, and
hair color diversity. Our solution, based on hair cards, is
not fully realistic and suffers from artifacts under certain
lighting conditions. A strand-based hair groom solution
would allow long flowing hair with hair-body interaction
and proper rendering with diverse lighting.

Body shape diversity. Our distribution of body shapes
is not uniform (see Sup. Mat.). Future work should use a
more even distribution and add children and people with di-
verse body types (scoliosis, amputees, etc.). Note that drap-
ing high-BMI models in clothing is challenging because the

mesh self-intersects, causing failures of the cloth simula-
tion. Retargeting AMASS motions to high-BMI subjects is
also problematic. We describe solutions in Sup. Mat.

More realistic body textures. Our skin textures are
diverse but lack details and realistic reflectance proper-
ties. Finding high-quality textures with appropriate li-
cences, however, is difficult.

Shoes. BEDLAM bodies are barefoot. Adding basic
shoes is fairly straightforward but the general problem is
actually complex because shoes, such as high heels, change
body posture and gait. Dealing with high heels requires re-
targeting, inverse kinematics, or new motion capture.

Hands and Faces. There is very little mocap data with
the full body and hands and even less with hands interacting
with objects. Here we ignored facial motion; there are cur-
rently no datasets that evaluate full body and facial motion.

6. Discussion and Conclusions
Based on our experiments we can now try to answer

the question “Is synthetic data all you need?” Our results
suggest that BEDLAM is sufficiently realistic that meth-
ods trained on it generalize to real scenes that vary signif-
icantly (SSP-3D, HBW, 3DPW, and RICH). If BEDLAM
does not well represent a particular real-image domain
(e.g. surveillance-camera footage), then one can re-purpose
the data by changing camera views, imaging model, mo-
tions, etc. Synthetic data will only get more realistic, clos-
ing the domain gap further. Then, does architecture mat-
ter? The fact that BEDLAM-HMR outperforms many re-
cent, more sophisticated, methods argues that it may be less
important than commonly thought.

There is one caveat to the above, however. We find
that HPS accuracy depends on backbone pre-training. Pre-
training the backbone for 2D pose estimation on COCO ex-
poses it to all the variability of real images and seems to
help it generalize. We expect that pre-training will eventu-
ally be unnecessary as synthetic data improves in realism.

We believe that there is much more research that BED-
LAM can support. None of the methods tested here estimate
humans in world coordinates [72, 86]. The best methods
also do not exploit temporal information or action seman-
tics. BEDLAM can support new methods that push these
directions. BEDLAM can also be used to model 3D cloth-
ing and learn 3D avatars using implicit shape methods.
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